Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation

نویسندگان

  • F. Liu
  • S. Shen
  • V. Anh
  • I. Turner
چکیده

The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). In this work, an explicit finite-difference scheme for TFDE is presented. Discrete models of a non-Markovian random walk are generate for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. We derive the scaling restriction of the stability and convergence of the discrete non-Markovian random walk approximation for TFDE in a bounded domain. Finally, some numerical examples are presented to show the application of the present technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous time random walk and parametric subordination in fractional diffusion

The well-scaled transition to the diffusion limit in the framework of the theory of continuous-time random walk (CTRW) is presented starting from its representation as an infinite series that points out the subordinated character of the CTRW itself. We treat the CTRW as a combination of a random walk on the axis of physical time with a random walk in space, both walks happening in discrete oper...

متن کامل

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

0 Non - Boltzmann Equilibrium Probability Densities for Non - Linear Lévy Oscillator

We study, both analytically and by numerical modeling the equilibrium probability density function for an non-linear Lévy oscillator with the Lévy index α, 1 ≤ α ≤ 2, and the potential energy x 4. In particular, we show that the equilibrium PDF is bimodal and has power law asymptotics with the exponent −(α + 3). 1 Starting equations Recently, kinetic equations with fractional derivatives have a...

متن کامل

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...

متن کامل

Retarding Sub- and Accelerating Super-diffusion Governed by Distributed Order Fractional Diffusion Equations

We propose diffusion-like equations with time and space fractional derivatives of the distributed order for the kinetic description of anomalous diffusion and relaxation phenomena, whose diffusion exponent varies with time and which, correspondingly, can not be viewed as self-affine random processes possessing a unique Hurst exponent. We prove the positivity of the solutions of the proposed equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004